Tag Archives: spherical geometry

A variant of the Apollonian gasket with icosahedral symmetry

We modify the Apollonian gasket presented in the earlier post Apollonian gasket as a spherical fractal with tetrahedral┬ásymmetry. In an icosahedron, five triangles meet at their corners, which gives us a fivefold rotational symmetry. At the centers of the triangles … Continue reading

Posted in Kaleidoscopes, Self-similarity, Tilings | Tagged , , , , | Leave a comment

Apollonian gasket as a spherical fractal with tetrahedral symmetry

Before discussing the relation between the Apollonian gasket and tilings of the sphere, I want to present briefly the spherical kaleidoscope with tetrahedral symmetry. A tetrahedron has three different kinds of points with rotational symmetry. Four equilateral triangles make up … Continue reading

Posted in Anamorphosis, Fractals, Kaleidoscopes, Tilings | Tagged , , , , , | Leave a comment