Tag Archives: kaleidoscope

Fractal tiling of a sphere with octahedral two-colour symmetry

The octahedron can have a nice two-colour symmetry. We get it from putting two tetrahedrons together, making a stellated octahedron. It is an eight-pointed star and has already been discussed by Pacioli in his book “de divina proportione” in the … Continue reading

Posted in Fractals, Kaleidoscopes, Self-similarity, Tilings | Tagged , , , , | Leave a comment

Apollonian gasket as a fractal in tiled hyperbolic space

Reading the fascinating book « Indra`s Pearls », written by David Mumford, Caroline Series and David Wright, you discover that the Apollonian gasket can be created by multiple inversions at four touching circles. Three of the circles are of equal … Continue reading

Posted in Fractals, Kaleidoscopes, Tilings | Tagged , , , , | Leave a comment

Apollonian gasket as a spherical fractal with tetrahedral symmetry

Before discussing the relation between the Apollonian gasket and tilings of the sphere, I want to present briefly the spherical kaleidoscope with tetrahedral symmetry. A tetrahedron has three different kinds of points with rotational symmetry. Four equilateral triangles make up … Continue reading

Posted in Anamorphosis, Fractals, Kaleidoscopes, Tilings | Tagged , , , , , | Leave a comment

Bridges 2018 Stockholm

I have been at the Bridges 2018 conference in Stockholm to present my work on kaleidoscopes. My paper “Kaleidoscopes for Non-Euclidean Space” has more details than this blog and is more coherent. The Bridges Organization, which promotes connections between mathematics … Continue reading

Posted in Kaleidoscopes | Tagged , , | Leave a comment

Decorations of semi-regular tessellations

In the last posts I have shown kaleidoscopes that make repeating images in Euclidean, spherical and hyperbolic spaces. They are decorations of regular tilings. But what about semi-regular tilings? Could we decorate them too using mirrors? This would give us … Continue reading

Posted in Kaleidoscopes, Tilings | Tagged , , , | Leave a comment

Elliptic kaleidoscopes

In “further hyperbolic kaleidoscopes” I used two straight lines and a circle to make a triangle that defines a kaleidoscope. For k,n and m-fold rotational symmetries at its corners, the sum of its three angles is π(1/k+1/n+1/m). If this sum is … Continue reading

Posted in Anamorphosis, Kaleidoscopes | Tagged , , , , | 3 Comments

The rotational and mirror symmetry at the center

In the last post I used mirror symmetry at two crossing straight lines and the related inversion at a circle. The mirror symmetries generate a k-rotational symmetry for an angle of intersection of π/k. With these symmetries I map any point … Continue reading

Posted in Anamorphosis, Kaleidoscopes | Tagged , , , , | Leave a comment

Further hyperbolic kaleidoscopes

In the last post I have used reflections at two parallel lines and a circle to get a Poincaré plane that shows a periodic decoration of hyperbolic space. What happens if the straight lines are not parallel and intersect? Then … Continue reading

Posted in Kaleidoscopes | Tagged , , , , | Leave a comment

Variations on the hyperbolic kaleidoscope

In the last post I have presented a hyperbolic kaleidoscope with two- and three-fold rotational symmetries. Could we have other rotational symmetries? Yes, we simply move the vertical lines! To get an n-fold rotational symmetry the circle has to intersect … Continue reading

Posted in Kaleidoscopes | Tagged , , , | Leave a comment

A hyperbolic kaleidoscope

In “creating symmetry” Frank Farris shows a wallpaper for hyperbolic space. He uses the Poincaré plane to project the hyperbolic space to our Euclidean drawing surface. The wallpaper then results from mirror symmetries at vertical lines at x=0 and x=0.5 … Continue reading

Posted in Anamorphosis, Kaleidoscopes | Tagged , , , , | Leave a comment