
Recent Posts
 A rosette in a roman mosaic is an exponential transform of a periodic tiling
 Fractal tiling of a sphere with octahedral twocolour symmetry
 A fractal tiling of both octahedral and icosahedral symmetry
 A variant of the Apollonian gasket with icosahedral symmetry
 Apollonian gasket as a fractal in tiled hyperbolic space
Recent Comments
Archives
 September 2019
 August 2019
 July 2019
 April 2019
 March 2019
 November 2018
 October 2018
 September 2018
 August 2018
 March 2018
 February 2018
 January 2018
 December 2017
 November 2017
 September 2017
 August 2017
 July 2017
 June 2017
 May 2017
 February 2017
 January 2017
 November 2016
 February 2014
 January 2014
 December 2013
 November 2013
 October 2013
 September 2013
 August 2013
 May 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 July 2012
 June 2012
 May 2012
 April 2012
Categories
Meta
Tag Archives: elliptic geometry
Straight lines in elliptic and hyperbolic space
A straight line is the shortest path between two points. Discussing curved space we would better call them geodesic lines to avoid confusion. I want to discuss these geodesic lines for surfaces of a sphere, elliptic space and hyperbolic space. … Continue reading
Posted in Kaleidoscopes, programming
Tagged elliptic geometry, geodesic line, hyperbolic geometry, Poincaré disc, straight line
1 Comment
How to program fast kaleidoscopes
This post repeats parts of earlier posts but I am trying to expand the ideas and explain them better. First, I am showing you how to make rosettes with rotational symmetry and mirror symmetry. This is easier than making kaleidoscopic images, … Continue reading
Elliptic kaleidoscopes
In “further hyperbolic kaleidoscopes” I used two straight lines and a circle to make a triangle that defines a kaleidoscope. For k,n and mfold rotational symmetries at its corners, the sum of its three angles is π(1/k+1/n+1/m). If this sum is … Continue reading