-
Recent Posts
Recent Comments
Archives
- November 2018
- October 2018
- September 2018
- August 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- February 2017
- January 2017
- November 2016
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
Categories
Meta
Category Archives: Self-similarity
Color symmetry using the length scale of the inflated lattice
I have shown some images with 2-color symmetry upon rotation shown in “images of 10-fold rotational …“. But the fast color changes they hacked them into small pieces. We can get better images if we use a color changing function with … Continue reading
Self-similarity and color modification
The Penrose tiling is self-similar as many other quasi-periodic tilings. It matches a copy of itself inflated by the golden ratio τ=(1+√5)/2≅1.618, see “Penrose tiling tied up in ribbons“. Noting that our quasi-periodic designs of 5-fold symmetry are closely related to … Continue reading
Coloring the Julia set
The Julia set of a function f(z) in the complex plane has all points z that remain finite upon iterations of the function. In the last posts I have used expanding functions to get fractal images from iteration, as discussed … Continue reading
Posted in Fractals, Self-similarity, Uncategorized
Tagged fractal, Iterated function, iteration, julia set, Rotational symmetry, Self-similarity
Leave a comment
Rainbow colors
We can define a continuous number x of iterations needed to reach the critical radius R. Note that if the n-th iteration of f(z) equals R then x=n, and if the (n-1)th iteration equals R then x=n-1. For values in-between … Continue reading
Posted in Fractals, programming, Self-similarity
Tagged Color, fractal, fractal design, Rotational symmetry
Leave a comment
self-similar fractals with rotational symmetry from function iteration
I was looking at my posts of march 2013 on complex function iterations, see in particular “fractal surprise from complex function iteration” and “self-similar images from iterated mappings of the plane“, and I got some new ideas I want to … Continue reading
Posted in Fractals, Self-similarity
Tagged analysis, complex function, fractal, iteration, Rotational symmetry, Self-similarity
2 Comments
repeated plane mapping, anamorphosis and mirrors
The image of the last post is quite bewildering. To get a calmer and simpler image I imposed mirror symmetries on the original image. A vertical mirror line results from taking the absolute value of the x-coordinate. Similarly, I take … Continue reading
Posted in Anamorphosis, Kaleidoscopes, Self-similarity
Tagged anamorphosis, kaleidoscope, Self-similarity, translational symmetry
Leave a comment
Self-similar designs from repeated plane mappings and anamorphosis
I am reconsidering ideas Pickover has presented in his book “Computers, Patterns, Chaos and Beauty”. My post “Fractal surprise from complex function iteration” discusses already some aspects. Complex numbers z=x+iy represent the (x,y)-plane and complex functions f(z) define a mapping … Continue reading
Posted in Anamorphosis, Self-similarity
Tagged anamorphosis, fractal, Self-similarity
Leave a comment