Category Archives: Kaleidoscopes

Decorations of semi-regular tessellations

In the last posts I have shown kaleidoscopes that make repeating images in Euclidean, spherical and hyperbolic spaces. They are decorations of regular tilings. But what about semi-regular tilings? Could we decorate them too using mirrors? This would give us … Continue reading

Posted in Kaleidoscopes, Tilings | Tagged , , , | Leave a comment

further wallpapers for hyperbolic space

An equilateral triangle gives us a kaleidoscope of three-fold rotational symmetry. With a square we get two-fold rotational symmetry. Would reflection at the sides of other regular polygons too give periodic images with rotational symmetry ? To get an h-fold … Continue reading

Posted in Anamorphosis, Kaleidoscopes, Tilings | Tagged , , , , | Leave a comment

How to program fast kaleidoscopes

This post repeats parts of earlier posts but I am trying to expand the ideas and explain them better. First, I am showing you how to make rosettes with rotational symmetry and mirror symmetry. This is easier than making kaleidoscopic images, … Continue reading

Posted in Anamorphosis, Kaleidoscopes, programming, Tilings | Tagged , , , , | Leave a comment

Elliptic kaleidoscopes

In “further hyperbolic kaleidoscopes” I used two straight lines and a circle to make a triangle that defines a kaleidoscope. For k,n and m-fold rotational symmetries at its corners, the sum of its three angles is π(1/k+1/n+1/m). If this sum is … Continue reading

Posted in Anamorphosis, Kaleidoscopes | Tagged , , , , | 2 Comments

The rotational and mirror symmetry at the center

In the last post I used mirror symmetry at two crossing straight lines and the related inversion at a circle. The mirror symmetries generate a k-rotational symmetry for an angle of intersection of π/k. With these symmetries I map any point … Continue reading

Posted in Anamorphosis, Kaleidoscopes | Tagged , , , , | Leave a comment

Further hyperbolic kaleidoscopes

In the last post I have used reflections at two parallel lines and a circle to get a Poincaré plane that shows a periodic decoration of hyperbolic space. What happens if the straight lines are not parallel and intersect? Then … Continue reading

Posted in Kaleidoscopes, Quasiperiodic design | Tagged , , , , | Leave a comment

Variations on the hyperbolic kaleidoscope

In the last post I have presented a hyperbolic kaleidoscope with two- and three-fold rotational symmetries. Could we have other rotational symmetries? Yes, we simply move the vertical lines! To get an n-fold rotational symmetry the circle has to intersect … Continue reading

Posted in Kaleidoscopes | Tagged , , , | Leave a comment