Author Archives: Peter Stampfli

Various projections of hyperbolic kaleidoscopic images

Similarly to the earlier post “Different projections of spherical kaleidoscopic images” I am now showing the same kaleidoscopic image using different projections you can use in my kaleidoscope browser app http://geometricolor.ch/sphericalKaleidoscopeApp.html. It primarily generates images as Poincaré discs. A typical result … Continue reading

Posted in Anamorphosis, Kaleidoscopes, Tilings | Tagged , , , , , | Leave a comment

Double spirals

In the post “Spirals” I have shown how to transform periodic Euclidean tilings into logarithmic spirals. A typical result looks like that: The spiral has a center at the origin and goes out forever. Actually, it spirals not only around … Continue reading

Posted in Anamorphosis, Kaleidoscopes, Tilings | Leave a comment

Different projections of spherical kaleidoscopic images

As you are here, I suppose that you might be interested in the TilingBot living on twitter. Each day it posts the image of a new tiling. Have a look at https://twitter.com/TilingBot and become its follower. I have fun to recognize … Continue reading

Posted in Anamorphosis, Kaleidoscopes | Tagged , , , , | 1 Comment

Anti-aliasing for improving image quality

About a year ago I have briefly shown in my post “smoothing images” that averaging can be important to get good images without pixel noise. For my kaleidoscope app, see http://geometricolor.ch/sphericalKaleidoscopeApp.html, I have improved on these ideas and that’s what … Continue reading

Posted in Kaleidoscopes, programming | Tagged , , | Leave a comment

Bridges 2018 Stockholm

I have been at the Bridges 2018 conference in Stockholm to present my work on kaleidoscopes. My paper “Kaleidoscopes for Non-Euclidean Space” has more details than this blog and is more coherent. The Bridges Organization, which promotes connections between mathematics … Continue reading

Posted in Kaleidoscopes | Tagged , , | Leave a comment

Straight lines in elliptic and hyperbolic space

A straight line is the shortest path between two points. Discussing curved space we would better call them geodesic lines to avoid confusion. I want to discuss these geodesic lines for surfaces of a sphere, elliptic space and hyperbolic space. … Continue reading

Posted in Kaleidoscopes, programming | Tagged , , , , | 1 Comment

Decorations of semi-regular tessellations

In the last posts I have shown kaleidoscopes that make repeating images in Euclidean, spherical and hyperbolic spaces. They are decorations of regular tilings. But what about semi-regular tilings? Could we decorate them too using mirrors? This would give us … Continue reading

Posted in Kaleidoscopes, Tilings | Tagged , , , | Leave a comment