
Recent Posts
Recent Comments
Archives
 September 2019
 August 2019
 July 2019
 April 2019
 March 2019
 November 2018
 October 2018
 September 2018
 August 2018
 March 2018
 February 2018
 January 2018
 December 2017
 November 2017
 September 2017
 August 2017
 July 2017
 June 2017
 May 2017
 February 2017
 January 2017
 November 2016
 February 2014
 January 2014
 December 2013
 November 2013
 October 2013
 September 2013
 August 2013
 May 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 July 2012
 June 2012
 May 2012
 April 2012
Categories
Meta
Monthly Archives: November 2017
Further hyperbolic kaleidoscopes
In the last post I have used reflections at two parallel lines and a circle to get a Poincaré plane that shows a periodic decoration of hyperbolic space. What happens if the straight lines are not parallel and intersect? Then … Continue reading
Posted in Kaleidoscopes
Tagged hyperbolic space, kaleidoscope, Poincaré disc, rose window, Rotational symmetry
Leave a comment
Variations on the hyperbolic kaleidoscope
In the last post I have presented a hyperbolic kaleidoscope with two and threefold rotational symmetries. Could we have other rotational symmetries? Yes, we simply move the vertical lines! To get an nfold rotational symmetry the circle has to intersect … Continue reading
Posted in Kaleidoscopes
Tagged hyperbolic space, kaleidoscope, Poincaré plane, Rotational symmetry
Leave a comment
A hyperbolic kaleidoscope
In “creating symmetry” Frank Farris shows a wallpaper for hyperbolic space. He uses the Poincaré plane to project the hyperbolic space to our Euclidean drawing surface. The wallpaper then results from mirror symmetries at vertical lines at x=0 and x=0.5 … Continue reading
Posted in Anamorphosis, Kaleidoscopes
Tagged hyperbolic space, inversive geometry, kaleidoscope, mirror symmetry, Poincaré plane
Leave a comment
Five fold rotational symmetry: Tuning the harmonics
In “better images from higher harmonics ?” I have replaced the basic sine and cosine functions by Fourier series approaching a symmetric triangular wave. This gave images with more details and somewhat smaller bullseyes. Here I want to show similar results … Continue reading