If we use n=3 in “Dualization method for ten-fold rotational symmetry – the code” we get the well-known periodic tiling with rhombs of 60 degree acute angle and hexagonal symmetry. It is useful for isometric projections, see the geometricon.wordpress.com blog for nice examples. Putting n=6 “doubles” it and gives a quasiperiodic tiling with 12-fold rotational symmetry. If we see only a small part it looks rather chaotic and we have to draw it large-scale to recognize its quasiperiodicity:

Points given by the projection method and six sets of parallel lines. The green frame shows the space occupied by the above image.
The point of perfect 12-fold rotational symmetry lies at the upper right and we just have enough space to see a few other patterns of local 12-fold rotational symmetry with stars of 12 rhombs. The points resulting from the projection method, see the image at the left and “12-fold rotational symmetry from projection“, shows us where the stars of twelve rhombs are at a very large scale. It seems that local 12-fold rotational symmetry is limited in range and does not extend farther than half the distance between the stars of rhombs.